Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1439575.v1

ABSTRACT

SARS-CoV-2 infection remains to spread worldwide and requires a better understanding of virus-host interactions. Here, we analyzed biochemical modifications due to SARS-CoV-2 infection in cells by confocal Raman microscopy. Obtained results were compared with the infection with another RNA virus, the measles virus. Our results have demonstrated a virus-specific Raman hallmark of molecular signature, reflecting intracellular modification during each infection. Advanced data analysis has been used to distinguish non-infected versus infected cells for two RNA viruses. Further, classification between non-infected and SARS-CoV-2 and measles virus-infected cells yielded an accuracy of 98.9 and 97.2 respectively, with a significant increase of the essential amino-acid tryptophan in SARS-CoV-2-infected cells. These results present proof of concept for the application of Raman spectroscopy to study virus-host interaction and to identify factors that contribute to the efficient SARS-CoV-2 infection and may thus provide novel insights on viral pathogenesis, targets of therapeutic intervention and development of new COVID-19 biomarkers.


Subject(s)
COVID-19
2.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2109.03332v1

ABSTRACT

In winter of 2020, SARS-CoV-2 emerged as a global threat, impacting not only health but also financial and political stability. To address the societal need for monitoring the spread of SARS-CoV-2, many existing diagnostic technologies were quickly adapted to detect SARS-CoV-2 RNA and antigens as well as the immune response and new testing strategies were developed to accelerate time-to-decision. In parallel, the infusion of research support accelerated the development of new spectroscopic methods. While these methods have significantly reduced the impact of SARS-CoV-2 on society when coupled with behavioral changes, they also lay the groundwork for a new generation of platform technologies. With several epidemics on the horizon, such as the rise of antibiotic-resistant bacteria, the ability to quickly pivot the target pathogen of this diagnostic toolset will continue to have an impact.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL